Arachidonic acid- and acetylcholine-induced relaxations of rabbit aorta.

نویسندگان

  • S L Pfister
  • W B Campbell
چکیده

The present study investigated the role of arachidonic acid and acetylcholine in mediating endothelium-dependent relaxations of rabbit aorta. Isolated thoracic aortic rings were precontracted with a submaximal concentration of norepinephrine, and the effect of various agents on arachidonic acid- and acetylcholine-induced relaxations was examined. Arachidonic acid elicited a concentration-related relaxation that was potentiated by the cyclooxygenase inhibitor indomethacin. Treatment with the lipoxygenase inhibitor nordihydroguaiaretic acid completely blocked but the cytochrome P450 inhibitor metyrapone had no effect on arachidonic acid-induced relaxation. NG-Monomethyl-L-arginine and nitro-L-arginine, compounds that inhibit the nitric oxide-like endothelium-derived relaxing factor, had little or no effect on arachidonic acid-induced relaxations. In contrast, nordihydroguaiaretic acid, metyrapone, NG-monomethyl-L-arginine, and nitro-L-arginine all attenuated the relaxation to acetylcholine; however, indomethacin had no effect on acetylcholine-induced relaxations. Arachidonic acid and acetylcholine had no effect on denuded rabbit aorta. Incubation of rabbit aorta with [14C]arachidonic acid resulted in the synthesis of major radioactive metabolites that comigrated with the prostaglandins and hydroxyeicosatetraenoic acids. Indomethacin selectively inhibited prostaglandin formation, nordihydroguaiaretic acid attenuated both prostaglandins and hydroxyeicosatetraenoic acids, and metyrapone blocked the epoxyeicosatrienoic acids. Additionally, acetylcholine elicited a twofold increase in tissue cyclic guanosine monophosphate content in contrast to a 59% reduction in cyclic guanosine monophosphate content observed with arachidonic acid. Therefore, these data suggest that in rabbit aorta, arachidonic acid-induced relaxations are mediated by an endothelium-dependent factor (or factors) that differs from the factor (or factors) released by acetylcholine. These results support the existence of multiple endothelium-derived relaxing factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reticulocyte 15-lipoxygenase-I is important in acetylcholine-induced endothelium-dependent vasorelaxation in rabbit aorta.

OBJECTIVE Aortic 15-lipoxygenase (15-LO) metabolizes arachidonic acid (AA) to 15-hydroperoxyeicosatetraenoic acid, which is then converted to the vasodilators 15-hydroxy-11,12-epoxyeicosatrienoic acid and 11,12,15-trihydroxyeicosatrienoic acid. These metabolites contribute to endothelium-dependent relaxations of rabbit aorta to AA and acetylcholine. We investigated the identity of rabbit aortic...

متن کامل

11,12,15-Trihydroxyeicosatrienoic acid mediates ACh-induced relaxations in rabbit aorta.

Rabbit aortic endothelium metabolizes arachidonic acid (AA) by the 15-lipoxygenase pathway to vasodilatory eicosanoids, hydroxyepoxyeicosatrienoic acids (HEETAs), and trihydroxyeicosatrienoic acids (THETAs). The present study determined the chemical identity of the vasoactive THETA and investigated its role in ACh-induced relaxation in the rabbit aorta. AA caused endothelium-dependent, concentr...

متن کامل

VASODILATOR EFFECTS OF ACETYLCHOLINE IN AN EXPERIMEN TAL MODEL OF HEART FAILURE

The purpose of the work presented here was to investigate endotheliumdependent relaxations in the rabbit coronary ligation model of heart failure. We investigated endothelium-dependent relaxations at the level of larger vessels (thoracic aorta and vena cava left renal artery and left renal vein lateral saphenous artery and lateral saphenous vein and finally central ear artery and marginal e...

متن کامل

Apamin-sensitive K+ currents mediate arachidonic acid-induced relaxations of rabbit aorta.

Arachidonic acid induces an endothelium-dependent relaxation of the rabbit aorta that is blocked by lipoxygenase inhibitors. The cellular vasodilatory mechanisms activated by arachidonic acid metabolites remain undefined. In rabbit thoracic aortic rings pretreated with indomethacin (10 micromol/L) and contracted with phenylephrine, arachidonic acid (0.1 to 100 micromol/L) induced concentration-...

متن کامل

Identification of 15-hydroxy-11,12-epoxyeicosatrienoic acid as a vasoactive 15-lipoxygenase metabolite in rabbit aorta.

Arachidonic acid (AA) causes endothelium-dependent smooth muscle hyperpolarizations and relaxations that are mediated by a 15-lipoxygenase-I (15-LO-I) metabolite, 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). We propose that AA is metabolized sequentially by 15-LO-I and hydroperoxide isomerase to an unidentified hydroxyepoxyeicosatrienoic acid (HEETA), which is hydrolyzed by a solubl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 1992